Read my Feed - from RSS to SIP

Alessandro Falaschi', Emiliano Esposito?

"2INFOCOM Dpt, Sapienza Universy of Roma, Italy

E-mail: 'alef@infocom.uniroma.it, 2emiespo@tiscali.it

Abstract: RRS web feeds are read by a synthetic voice,
trough a SIP VoIP call, offering eye-free access to huge
amount of classified textual content available on the
Web. DTMF browsing allows to choose in between
different RSS providers, and to cycle trough RRS
titles, until the desired full article is selected, and read.
The main content in the page is located by explicit
parsing for known feeds, or by heuristic reasoning for
new feeds and pages, which can be directly accessed by
passing their URI as a SIP address parameter.
Scalability is attained by caching of network and audio
data instances, and expressivity improved by
generation of SSML markup on the basis of the
original HTML and CSS code. The whole system is
made of a collection of Open Source components and
public W3C standards, and the use of Festival for
Speech Synthesis makes the service available for any
supported language.

Keywords: Voice over IP, SIP telephony, RSS, Voice
XML, XSTL, Speech Synthesis, SSML, Multi Lingual

INTRODUCTION

RSS feeds [1] are with no doubt an XML-based pervasive
format with meta-tagging capability, used by many news
and blog publisher for indexing their content, allowing for
easy retrieval and aggregation of past and recent
additions. The idea behind our project is that RSS indexed
content already contains all the necessary information for
being accessed by other media delivery technologies, such
as speech synthesis. Text to Speech conversion of
retrieved text into voice is indeed an already existing
commodity at the User Agent premise implemented by
some PDA and cell phone [2], and server side solutions
for automatic reading of stored information by IVR or
CRM systems is absolutely not a novelty [3]. But in both
cases, we are faced with closed, proprietary, and
application-specific systems. On the converse, RSS is a
container format ready to express quite any kind of web
content, and a system entirely made of publicly available
components allows for great flexibility and cooperative
support among its potential users. Universality of the
application domain is paired by full multi-lingual
operation, thanks to the choice of Festival [4] as the Text
to Speech engine; and the use of Asterisk as the media
gateway, warrants the access to the system to the widest
variety of user terminals, from PSTN to VoIP.

The rest of the work is organized as follows: first, a
description of the components used, and of the way they
communicate each other, is given. Then, a description of
the interaction mode is given, and the mechanism by
which RSS feeds and web pages are retrieved is discussed,
together with the way they are converted in the audio
brows-able VoiceXML format. Then, an insight about the
way the speech process is operated is made, and the
results of early experimentation given. Finally, some
speculations about possible future uses and applications
of the system are drawn.

SYSTEM ARCHITECTURE

Fig. 1 sketches how all the pieces (software entities,
protocols, formats) fit together, and is the right place for
listing them. All the components are released according to
an Open License, and communication is performed by
public standard and protocols.

On the left the VoIP PBX Asterisk [5] is shown, which
terminates SIP and DTMF signaling generated by the
user, and sends back the RTP streaming of media related
to accessed content. But note that media should be not
limited to audio — for instance, a virtual talking head
could be added in the future.

Asterisk is under the control of the Voiceglue [6] Perl
package, shown in the middle part of the figure, which
adds to Asterisk the capability of correctly execute voice
dialogs expressed by VoiceXML sheets. In particular, the
Phoneglue sub-process uses the Asterisk Manager port for
opening the FastAGI channels by which it is notified
about the remote party interaction, and by which it
requests the playback of audio files. Voiceglue itself is a
separate process, written to be independent from the
Asterisk Softswitch implementation, and which uses an
ad-hoc crafted protocol called SATC (Simple ASCII
Telephony Control) to communicate with PhoneGlue.
Voiceglue bases its operation on some further
components, such as

* the OpenVXI library [7], offering the services on
which the VoiceXML browsing is based;

* the SSMLExtender module, expressly written by us,
which adds support for the Speech Synthesis Markup
Language (SSML) to the VoiceXML sheets dealt by
VoiceGlue, offering a standard way of expressing
prosodic variations.

In turn, the OpenVXI library used by VoiceGlue uses
some more Open Source components, i.e.

» the Exerces XML parser, enabling OpenVXI to

(i Text ko Speach
i ATC 5
Asterisk 2
i [IEES SRR~ SSMLExtenderfel | Festival
Asterisk { -r-1lr-| I’I 1€
Manager Manager Tce
Interface | | MeSsages | e
P nlermne|
Calls Fastasl 5 : O Module | HTTP
= _| messages g Voiceglue p HTTF Apache =
- = B e Spider CGl
KTP | :;? = o n Monkey
R | Script :Ii
VolP i Lu V
PSS s
29 X WML ReadMyFeed k. SimplePie
Dynlog | :_:'rr::; (PHF}
4
LEGEMDA: }.TTPV H'I_I'F'II
SFROTOCOLS Voiceglue Perl Package
SCOMPONENTS External RSS Feed
@ TECHNOLOGIES h i Websita i
@MODULES ADDED BY US
Web and B35 Con £5
SEE _,/'J

Figure 1: Overall System Architecture

interpreter VoiceXML sheets;

» the Spider Monkey JavaScript interpreter, as
JavaScript is often used as an helper for audio
navigation within VoiceXML sheets;

¢ the Internet module, used to fetch new VoiceXML
pages from a web server.

At the right of Fig. 1 the source (RSS feed) and
destination (Festival) of the retrieved content are shown,
together with the ReadMyFeed PHP CGI (developed by
us) which effectively builds up the VoiceXML sheets
starting from RRS or HTML objects. Shown in the figure
also are

e the SimplePie PHP component by which the RSS
feeds are retrieved;

 the storage of audio files corresponding to synthesized
prompts to be played by Asterisk when requested.

Not shown, is the three level cache made of

COMANDI UTENTE
PER READ MY FEED
Riascolta I'uitima
prampt (D)
Esti (1)

Salta al menu
procodente (4)
Seleziona la voce
di rmenudar licolo

ascoltato (5)

Salla al menu
succassivo (B

|«

|T| Ascolta aiuta (%)

Iema Indietro nella
navigazione (7]

Figure 2: keys semantic assignment

» storage of already retrieved RSS feeds;

» storage of already retrieved HTML pages and their
VoiceXML counterparts;

* audio files naming mechanism, which allows to
synthesize recurrent phrases only once.

USER INTERFACE AND NAVIGATION

The structure of audio browsing is built by means of the
expressive power granted by the VoiceXML [8] syntax,
and our application is based on three chained VoiceXML
sheet, i.e. one for the choice of a RSS channel, one for the
choice of a title, and one for the playback of the selected
content. As the user can interact only by DTMF signaling,
we avoided as much as we can to build typical unfriendly
patterns as “Press one for this, two for that, three for the
other, four for another one...”, so hard to keep in mind,
and tried to maintain the semantic associated with the
keys as stable as possible along the whole navigation
history. In particular, key n. 5 always means “this”, and
selection of an item among a list of choices is performed
by just “pressing five” after (or during) the utterance of
the desired item: this behavior is obtained by building a
new VoiceXML form for each item. For completeness Fig
2 shows a description of the general keys usage. Chaining
and navigation in between the different VoiceXML sheets
is made possible by sharing in between them the same
application root document, which defines a common
javascript namespace of session variables, and holds the
forms to be executed as event handlers.

FROM RSS TO VOICEXML

Instead of having fixed, stored VoiceXML pages, they are
generated on-the-fly, by execution of expressly written
PHP code, named ReadMyFeed, and executed as a CGI
by the web server Apache, after that Voiceglue has
requested a new page.

The first VoiceXML sheet of the dialog is automatically
generated by a first PHP script, starting from an XML
configuration file, and implements a two-level decision
tree by which an RSS channel is selected. A first menu
allows to choose among some predefined channel genre
(e.g. news, sports, blogs, whether..); then, a selection of
known RSS channels is proposed, and one selected after
the user input. Then, the retrieval of the titles associated
to the requested channel is delegated to a second PHP
script, which in turn passes the feed URI to the SimplePie
[9] access filter, and formats its response by creating a
new VoiceXML page. SimplePie supports a wide range of
different (RSS and Atom) specifications, provides a
convenient caching mechanism, and offers a nice set of
parsing primitives. The resulting VoiceXML sheet is
returned to VoiceGlue (and thus played to the user),
allowing this time to cycle through the titles found in the
feed, and choose one of them by pressing again the 5 key.

FROM HTML TO SSML

Selection of a title by the user, also identifies the
permalink URI where the full article can be found, so that
Voiceglue asks again our ReadMyFeed PHP script to
generate a new VoiceXML sheet, containing the
permalink URI content, to be used for its audio rendering
to the user. This time the web page is retrieved directly,
and needs substantial additional processing before of
arriving to a useful representation, i.e.

1) if the page has been processed already, retrieve its
VoiceXML counterpart from the cache, and go to step
;s

2) cleaning of badly-formed HTML elements;

3) parsing of the HTML page to a DOM representation;

4) location of the DOM node containing the main article
content;

5) derivation of the SSML tagged text starting from
HTML and CSS tags;

6) insertion of the SSML code within a new VoiceXML
sheet and update of the Voice XML cache;

7) return of the result to Voiceglue and then to the user.

Some insigth about the previous steps are given below.

Location of the main article contents

If the content provider of the permalink URI belongs to a
set of known ones, step 4) is performed by using a set of
hand-crafted rules which leverage on the peculiar page
structure. But unknown sites should be dealt as well,
because the user can bypass the first VoiceXML selection
stage of the navigation, and directly request the reading of
a particular RSS feed URI, as explained later. So, some
heuristics have been added [10] for locating the main
content for unknown channels.

XSLT conversion from HTML to SSML

Speech Synthesis Markup Language SSML [11] permits
for addition of prosodic markers and cues to the text to be
synthesized, allowing to enrich the resulting speech with

variations representing intended semantic evidence. But
HTML (and CSS) already contain such a semantic cues,
which are inserted by the content creator for highlight
some words with respect to others. So, in step 5) above we
re-used an already available set of XSLT [12] rules,
developed in the framework of the KTTS project [13], and
use the PHP XSLTProcessor class for doing the
transformation. The original xhtmi2ssml.xsl rules where
modified in order to fit well with the rest of the system.
For instance, we started a new SSML <prompt> contest
for many HTML tags, reducing in this way the speech
rendering delay, as introduced by the execution pipeline
described below.

SPEECH SYNTHESIS PROCESS

Once the VoiceXML sheets are returned to VoiceGlue,
every prompt there contained must be converted to an
audio signal to be played by Asterisk: here is it where the
Text to Speech System Festival [4][14] plays its role.
Festival is designed to be useful for conducting linguistic
studies, as well as for ease the development of new
synthetic voices for new languages, and for ease of adding
TTS support to newly developed applications. Its behavior
is almost completely programmable by a SCHEME [15]
control language, whose statements can be communicated
at run-time over a socket control channel.

SSML Extender Module

At this point, we developed some new Perl code which we
called SSMLExtender, in order to make VoiceGlue
capable of functioning with Festival in an efficient
manner, and to make use of the SSML markup introduced
into the VoiceXML sheets:

* while VoiceGlue originally spawned a new child
process for every new utterance, we put a threshold on
the maximum processing load, and created a queue
based on semaphores, by letting an unique copy of
Festival to run in server mode, controlling it by socket
communications, and forcing it to serve no more than
N concurrent requests;

* while VoiceGlue did not correctly honored SSML,
trowing away most of the markup, we modified that
behavior, so that SSML is now fully supported.

But these were not the only changes we took about Speech
Synthesis. At first we tweaked a bit the Scheme
configuration of the Italian voice, in order to improve the
pronounce of foreign terms and Internet addresses. Then,
we tackled the two following points.

XSLT conversion from SSML to SABLE

Festival do not currently understand SSML markup:
instead, it honors the SSML predecessor named SABLE
[16]. Therefore, we had to perform a new XML-to-XML
conversion, by applying another set of XSLT rules for
derivation of the SABLE markup which expresses the
same variations indicated by the original SSML. Again,
we started from the work done for the KTTS project [17],
slightly modified for proper handling of the language

SSML attribute, and used it from within the
SSMLExtender Perl module, by invocation of the
XML::LibXSLT CPAN module [18] for performing the
translation.

Audio Segmentation and Caching

The ReadMyFeed component splits a long VoiceXML
sheet in a series of shorter prompts, thus avoiding an
excessively long utterance to introduce great delay to the
rendering of shorter ones, making the performances fair
also in the case of concurrent processing, i.e. when
different concurrent users access different, never
requested pages. At the opposite, in order to simplify the
audio prompts cache handling, and the subsequent
playback through Asterisk, we concatenate all the prompts
in the same VoiceXML page into an unique file, and
perform an audio conversion of the result to PCM ulaw
format. Finally, we compute an unique MDS5 hash from
the original VoiceXML page content, and use it as the
name for the corresponding audio file, so that its synthesis
can be avoided and the cached result used instead, when a
new user asks again for the same content.

ON LINE TEST BED

The discussed system is operative and initialized with
some representative feeds for news, sports, whether
forecast and blog contexts. It can be reached by calling
sip:readmyfeed @ing.uniromal.it, and the content can be
browsed and selected by DTMF signaling. Moreover,
direct access to feeds (reachable or not by DTMF
browsing), can be obtained by adding some optional
parameters to the called SIP address, according to the
general syntax

sip:readmyfeed @ing.uniromal.it;parameters

where parameters can be the concatenation, separated by
a semicolon (;), of some of the following elements:

e feedurl=<URI>; where <URI> is the RSS feed
address. e.g. feedurl=http://www.unita.it/drss.php;

* feedmax=<number>; where <number> is how many
titles should be listed, e.g feedmax=>35;

e readall=<boolean>; where <boolean> determines if
the page should be read entirely, or should be limited
to the more relevant content, eg readall=yes.

RESULTS AND FUTURE TRENDS

Early tests shows that our audio user interface for RSS
feeds browsing and access exhibits good usability and
performances. Voice quality is acceptable, but the really
wide lexicographical domain exposed by uncensored RRS
channels, produced a moderate amount of mispronounced
words, at least for Italian. This could be turned into an
advantage, if feedback from the users is collected, and
used as an help for enlargement of the actual pronounce
exceptions dictionary. Next experiments could involve
automatic language switching, either on the basis of
explicit document metatagging, or by requesting a specific
rendering language as a SIP address parameter, or by
statistical text analysis. Finally, some experiments could
be made about the mood selection for emotional speech
synthesis, based on the analysis of the text.

References

[1] - RSS 2.0 Specs - http://www.rssboard.org/rss-specification

[2] - http://www.nuance.com/talks/

[3] - Loquendo VoxNauta Platform -
http://www.loguendo.com/en/technology/voxnauta platform.htm

[4] - Festival - http://www.cstr.ed.ac.uk/projects/festival/

[5] - Asterisk - http://www.asterisk.org/

[6] - VoiceGlue - http://www.voiceglue.org/

[7] - OpenVXI - http://sourceforge.net/projects/openvxi/

[8] - VoiceXML 2.1 - http://www.w3.0rg/TR/2007/REC-voicexml21-
20070619/

[9] - SimplePie - http://simplepie.org/

[10] - http://w-shadow.com/blog/2008/01/25/extracting-the-main-
content-from-a-webpage/

[11] - SSML - http://www.w3.org/TR/speech-synthesis/

[12] - XSLT - http://www.w3.org/TR/xslt

[13] - Gary Cramblitt - KDE Text-to-Speech System — file
kdeaccessibility/kttsd/filters/xmltransformer/xhtml2ssml.xsl

[14] - Festival speaks Italian - http://www2.pd.istc.cnr.it/FESTIVAL/

[15] - SCHEME - http://groups.csail.mit.edu/mac/projects/scheme/

[16] - SABLE - http://www.bell-labs.com/project/tts/sable.html
[17] - Paul Giannaros - KDE Text-to-Speech System — file

kdeaccessibility/kttsd/plugins/festivalint/SSMLtoSable.xsl
[18] - XML::LibXSLT - http://search.cpan.org/dist/ XML-
LibXSLT/LibXSLT.pm

http://www.loquendo.com/en/technology/voxnauta_platform.htm
http://groups.csail.mit.edu/mac/projects/scheme/
http://www2.pd.istc.cnr.it/FESTIVAL/
http://sourceforge.net/projects/openvxi/
http://www.voiceglue.org/
http://www.asterisk.org/
http://www.cstr.ed.ac.uk/projects/festival/
http://search.cpan.org/dist/XML-LibXSLT/LibXSLT.pm
http://search.cpan.org/dist/XML-LibXSLT/LibXSLT.pm
http://w-shadow.com/blog/2008/01/25/extracting-the-main-content-from-a-webpage/
http://w-shadow.com/blog/2008/01/25/extracting-the-main-content-from-a-webpage/
http://www.rssboard.org/rss-specification
http://www.nuance.com/talks/
http://www.bell-labs.com/project/tts/sable.html
http://www.w3.org/TR/xslt
http://www.w3.org/TR/speech-synthesis/
http://simplepie.org/
http://www.w3.org/TR/2007/REC-voicexml21-20070619/
http://www.w3.org/TR/2007/REC-voicexml21-20070619/

	Introduction
	System architecture
	User interface and navigation
	From RSS to VoiceXML
	From HTML to SSML
	Location of the main article contents
	XSLT conversion from HTML to SSML

	speech synthesis process
	SSML Extender Module
	XSLT conversion from SSML to SABLE
	Audio Segmentation and Caching

	On line test bed
	Results and future trends

