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Overwiev
Summary of the presentation

Since it is not possible to compute a Fourier transform for random signals, a statistical
description of it must be adopted. The concept of a random process is therefore introduced, and
how to calculate its ensemble and time averages is discussed, then the conditions for defining it
as a stationary and ergodic process are explained. After some examples, a 2D random variable is

extracted from the process, defining correlation and covariance between the two components,
both from a probabilistic and a statistical point of view

The autocorrelation function defined for both random processes and deterministic signals is then
introduced, as well as the intercorrelation between different signals, and links to convolution are
clarified. The properties of autocorrelation are then enunciated, and a few words are spent on
the link between Pearson’s coefficient and Schwartz’s inequality, just as the matched filter can

also be thought of in this way

Wiener’s theorem is a valuable tool for obtaining the spectral density for any type of signal, be it
deterministic or random, as well as for opening an alternative path towards already known

results. Examples of its application are given. Particular emphasis is given to the multivariate
Gaussian and to its peculiar characteristics, as well as to its suitability to express the statistics of
the samples of an ergodic Gaussian process. Spectral estimation by means of a periodogram is

also explored.

Finally, the issues of random signals and filtering are jointly addressed: in fact, the expression of
the spectral density at the filter output is considered, and then its statistical description is
evaluated. The set of slides ends by analyzing the result of adding or multiplying random

processes.
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Random variables and probability density

Random variable
Let X to be a random variable (or r.v.), whose values x are taken from a sample space
Ω, and are called a realization of the r.v. The Ω set can accommodate a finite or infinite
number of values, making X a discrete or continuous r.v.
Probability density function (or p.d.f.)
Is a non-negative function pX (x) of the r.v. X with unit area, whose definite integral´ b

a pX (x) dx gives the probability to find a realization x of X such that a < x ≤ b
Distribution function
Is a non-decreasing function 0 ≤ FX (a) ≤ 1 of a variable −∞ < a < ∞, which gives the
probability of finding a realization x of X less than or equal to a, resulting
FX (a) =

´ a
−∞ pX (x) dx = Pr {X ≤ a}.

Continuous random variable
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Histogram

Instead of postulating which p.d.f. your r.v. should obey, you can

observe a (large) amount of results, repeating N times some sort of
experiment
note the range of observed values
divide the range into a finite number of bins and count how many
results (Nk) fall into each kth bin
draw a rectangle for each bin, with a heigth equal to the ratio Nk/N of
results in the kth bin compared to the total number of attempts

For each bin k, you get an estimate of the probability pk that a future
realization of X falls into the kth bin

x

p (x)
X
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Expected value and moments

Expected value (or ensemble average)
It’s a weighted mean, i.e. it weighs a function of a r.v. g (x) with the probability
of each possible outcome

EX {g (x)} =
´∞

−∞ g (x) pX (x) dx
It can also be defined for functions of a pair (or more generally of an n−ple) of
r.v. using their joint p.d.f., that is

EX ,Y {g (x , y)} =
´∞

−∞
´∞

−∞ g (x , y) pXY (x , y) dxdy
or, if a conditional p.d.f. pX/Y (x/y) is used, we will obtain a conditional
expected value EX/Y {g (x)}, which depends on the value of y

Moment
By setting g (x) = xn we obtain the moment of order n

m(n)
X = E {xn} =

´∞
−∞ xnpX (x) dx

which for discrete r.v. is written as m(n)
X =

∑
i xn

i pi , thus weighting the possible
realizations xi with the respective probabilities pi = Pr {x = xi}
Now note that m(0)

X =
´∞

−∞ pX (x) dx = 1. With order n equal to 1 or 2 we get..
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Mean value and quadratic mean
Mean value (or centroid) is the first-order moment

mX = m(1)
X =

´∞
−∞ xpX (x) dx

Quadratic mean (or square mean) is the second order moment

m(2)
X =

´∞
−∞ x2pX (x) dx

Example
Think at the r.v. X as at the height of a population: its mean value mX can be
estimated as the arithmetic mean of the measurements

m̂X =

N1 times︷ ︸︸ ︷
x1 + x1 + · · · +

N2 times︷ ︸︸ ︷
x2 + x2 + · · · + . . . +

Nn times︷ ︸︸ ︷
xn + +xn + · · ·

N = x1N1 + x2N2 + ... + xnNn

N
When N =

∑n
i=1 Ni approaches ∞, the formula for m̂X coincides with that for the mean

mX if we substitute the probabilities pX (x) dx with the Pr (xi ) values obtained for the
histogram, i.e. Pr (xi ) = N(xi <x≤xi +∆x)

N = Ni
N , thus transforming the integral into a

summation, that is ´∞
−∞ xpX (x) dx ⇒

∑
i xi Pr (xi )

This point of view motivates the concept of weighing the possible values of x with
their respective frequencies
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Central moment and variance
Central moment
In the case g (x) = (x − mX )n the corresponding expected value is called a
central moment of order n, expressed as

µ
(n)
X = E

{
(x − mX )n}

=
´∞

−∞ (x − mX )n pX (x) dx

It is straightforward to note that µ
(0)
X = 1 and that µ

(1)
X = 0

Variance σ2

It is the name given to the central moment of 2nd order, corresponding to

σ2
X = µ

(2)
X = E

{
(x − mX )2

}
=
´∞

−∞ (x − mX )2 pX (x) dx

The variance square root σX is called standard
deviation. While the mean mX indicates where the
“statistical center” of the probability density is
located, σX indicates how much the individual
realizations of the r.v. are dispersed around mx

x

σx

mx

p (x)
X

A remarkable relationship that links the first two moments (central and not) is
σ2

X = m(2)
X − (mX )2
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Uniform and Gaussian random variable
Often the true p.d.f. of the data under examination can only be postulated or
hypothesized, taking advantage of the fact that the parameters that define it can be
estimated starting from the experimental data
Uniform random variable

pX (x) = 1
∆ rect∆ (x − mX )

It uses mX as centering parameter and its variance is related
to the dynamic range ∆ as (check the book) σ2

X = ∆2

12

p (x)
X

x

mx

∆

∆
1

Gaussian random variable

pX (x) = 1√
2πσx

exp
{

− (x−mx )2

2σ2
x

}
completely defined by the first order and second order
central moments mx and σ2

x = m(2)
X − (mX )2, which can

be estimated from the experimental data as

m̂x = 1
N

∑N
n=1 xn and m̂(2)

x = 1
N

∑N
n=1 x2

n

The Gaussian r.v. emerges in many natural phenomena

x
p (x)
X
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where a very large number of random causes add up, all statistically independent and
with the same p.d.f., as can be experimented at
https://www.randomservices.org/random/apps/Dice.html.

Alessandro Falaschi Random signals and Wiener’s theorem Signal Processing & Inform Theory

https://teoriadeisegnali.it/libro/html/libro-6.2.html#toc-Subsection-6.2.3
https://www.randomservices.org/random/apps/Dice.html


Multivariate random variable
Here X represents an N−dimensional r.v. whose realizations x = [x1, x2, · · · , xN ]T are
made by N r.v.s, described by a joint N−dim p.d.f. pX (x) = pX (x1, x2, · · · , xN)
Marginal probability density function For each single r.v. xi a one-dimensional
p.d.f. pXi (xi ) can be obtained by saturation of pX (x) as
pXi (xi ) =

´∞
−∞

´∞
−∞ · · ·

´∞
−∞

N−1 integrals
pX (x1, x2, · · · , xi−1, xi+1, · · · , xN) dx1 · · · dxi−1dxi+1 · · · dxN

Conditional probability density function: is the p.d.f. of a xa = (x1, x2, · · · , xa) sub-set
of r.v. if the other xb = (xa+1, xa+2, · · · , xN) are known, obtained by dividing the joint
p.d.f. pX (x) for the marginal pX (xb) of the conditioning r.v., that is pX (xa/xb) = pX (x)

pX (xb)

Expected value and moments The marginal pXi (xi ) allows us to find the moments of
each marginal r.v. as mxi = EX {xi } =

´
xi pXi (xi ) dxi , and to obtain a mean vector for

X as mX = (mx1 , mx2, , · · · , mxN )
Mixed moments They refer to two or more elements of X : for example, the mixed
moment of order (n, m) is defined as m(n,m)

xi xj = EX
{

xn
i xm

j
}

=
´ ´

xn
i xm

j pXi Xj (xi , xj) dxi dxj
and the central mixed moment of order (n, m) as
µ

(n,m)
xi xj = EX

{
(xi − mxi )

n (
xj − mxj

)m}
=
´ ´

(xi − mxi )
n (

xj − mxj

)mpXi Xj (xi , xj) dxi dxj

where the two-dimensional pXi Xj (xi , xj) is obtained by saturating pX (x) over
dimensions other than i and j
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Random processes for computing the unknown
While the spectral properties of deterministic signals can be evaluated by calculating an
inner product, either

• as an integral when an analytic expression of the signal is known, or
• as a finite summation when it is a discrete-time sequence

on the other hand if the signal is not known in advance, we have to resort to some
probabilistic description of it, and work on it
Such a signal is called a member of a random process and is indicated as x (t, θ), where

• t ∈ T is some time instant, and
• θ ∈ Θ is a r.v. identifying the process member

Therefore a specific member x (t, θi ) is known
only after the knowledge of θi ∈ Θ, and can be
regarded as a deterministic signal for which a
conditional pdf pX (x/θi ) can be defined (at the
rigth in figure)
If, on the other hand, we fix a time instant tj , the
value x (tj , θ) is a random variable, whose
realization depends on that of θ ∈ Θ; therefore,
the density pX (x (tj)) (independent of θ) is
defined (at the bottom in figure)

t

x(t, )θ1

t

x(t, )θ2

t

x(t, )θi

θip (x/ )
X

x

θ1p (x/ )
X

p (x( ))
X

t j

x

t0 t j

p (x( ))
X

t0

x

x
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Ensamble and time averages
Ensamble averages With reference to any (specific) time instant tj we can
compute moments of the process as a function of time by operating an ensamble
average, which can be written as

m(n)
X (tj) = EΘ {xn (tj , θ)} =

´∞
−∞ xn (tj , θ) pΘ (θ) dθ =

´∞
−∞ xnpX (x (tj)) dx

where the last equality indicates how the statistical variability of xn is fully
described by the p.d.f. pX (x (tj)) of x (tj , θ) as θ ∈ Θ varies
Time average Alternatively, we can fix a particular θi realization of Θ, such that
time averages can be calculated for any a single member x (t, θi), noted by a line
above (.) the averaged quantity:

xn (t, θi) = limT→∞
1
T
´ T/2

−T/2 xn (t, θi) dt
In particular, we find

the mean value x (t, θi) = limT→∞
1
T
´ T/2

−T/2 x (t, θi) dt and
the power (or quadratic mean) x2 (t, θi) = limT→∞

1
T
´ T/2

−T/2 x2 (t, θi) dt
We note that a generic time average:

does not depend on time;
is a random variable, as it depends on the realization of Θ.
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Time average calculated as ensemble average

The extraction from x (t, θi) of a value at a random instant t ∈ T defines
a further random variable, described by the (conditional) p.d.f. pX (x/θi),
which we drewn to the right of the previous figure

If the pX (x/θi) is known, the temporal averages of order n can be
calculated (for that member) as the respective moments:

xn (t, θi) = lim
T→∞

1
T

ˆ T/2

−T/2
xn (t, θi) dt =

ˆ ∞

−∞
xnpX (x/θi) dx =

= EX/Θ=θi {xn} = m(n)
X (θi)

This is in fact equivalent to carrying out a weighted average, in which
each possible value of x is weighted by its probability pX (x/θi) dx

It is the same concept applied to the equivalence given at pag. 8
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Stationary and ergodic processes
Stationarity Is when pX (x (tj)) does not depend on tj , i.e. pX (x (tj)) = pT

X (x) for any
tj ∈ T . Then all ensemble averages are time independent, that is m(n)

X (t) = m(n)
X for

∀t ∈ T , and the pX (x (tj)) at the bottom of the drawing are all equal
Suppose now to divide x (t, θi ) into time intervals and to calculate the time averages for
each interval:

▶ if they are all (almost) equal to each other, and equal to time average m(n)
X (θi ) of

the entire member, then the member is (individually) stationary
▶ obviously, if all members are individually stationary, so is the process to which they

belong
Egodicity Is when each member of a stationary process is statistically representative of
all the others

This occurs when the p.d.f. pX (x/θi ) for any member does not depend on θi , so that
pX (x/θi ) = pΘ

X (x)
Since pX (x/tj ) = pT

X (x) also holds for the stationarity, then pΘ
X (x) = pT

X (x) = pX (x),
so that the time averages m(n)

X (θi ) (calculated as moments) are identical for all θi , and
also identical to the ensemble averages m(n)

X (tj ) calculated for any instant
We can therefore state the definition of ergodicity:

A stationary process is ergodic if the time average calculated on any realization
of the process coincides with the ensemble average relative to a random vari-
able extracted at any instant (due to stationarity) from the set of its members
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Examples
We are now able to calculate time averages without knowing the waveform of the
processes’s members:
Power of a signal For ergodic processes it is equal to the moment of 2nd order:

PX (θ) = x2 (θ) = limT→∞
1
T
´ T/2

−T/2 x2 (t, θ) dt =
´∞

−∞ x2pX (x/θ) dx =
=
´∞

−∞ x2pX (x) dx = m(2)
X = E

{
x2} = PX

Mean value It can be calculated as the first-order moment mx of the r.v. x extracted
from the process:

x̄ (θ) = limT→∞
1
T
´ T/2

−T/2 x (t, θ) dt =
´∞

−∞ xpX (x/θ) dx =
=
´∞

−∞ xpX (x) dx = E {x} = mX

Power, variance, quadratic mean and effective value From the above results and that
of page 9 we can write

PX = m(2)
X = σ2

x + (mx )2

for signals with zero mean (mx = 0) we obtain PX = σ2
x

the effective value
√

PX coincides with the standard deviation σx

the root of the power is also often referred to as the root mean square (rms) value,
defined as xRMS =

√
PX =

√
x2 (t), that is the root of the square mean (over time)

If the signal has zero mean, then xRMS coincides with the effective value; if x (t) is a
member of an ergodic process with zero mean, xRMS coincides with the standard deviation
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Summarizing

If a process is ergodic, it is also stationary, but not the other way around
▶ Example: if x (t, θ) = Cθ is equal to a (random) constant, then it is certainly

stationary, but as pX (x/θ) = δ (x − Cθ), it is not ergodic
If a process is ergodic, then it is possible to:

▶ calculate the ensemble averages in the form of time averages on a single
actual realization, or

▶ obtain the time averages of any realization starting from the ensemble
averages, having the statistics pX (x), and also

▶ estimate the p.d.f. starting from the histogram of the values extracted from
any member.

If the equality between ensemble and temporal averages exists only up to to
a certain order and not beyond, the process is not ergodic in strict sense

▶ as far as telecommunications are concerned, the ergodicity property in a wide
sense is often sufficient, i.e. limited to the 2nd order, which guarantees

x (t) = E {x} = mx and x2 (t) = E
{

x2} = m(2)
x .
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From a process to a 2D random variable
Probability and statistics can be further used in signal processing after the
definition of a new function of a signal called autocorrelation, used to evaluate
the power spectral density for deterministic and random signals in a unified way

To this aim we consider two instants t1
and t2 = t1 + τ and the random
variables x1 = x (t1), x2 = x (t2)
extracted from a θ member of process
x (t, θ), or their values taken from a
specific member x(t, θ)

t

t1

t 2

x  = x(t )2         2

x  = x(t )1         1

x(t, )θ
−

τ

As θ ∈ Θ varies, the two-dimensional r.v. (x1, x2)
is described by a joint probability density
pX1X2 (x1x2; t1t2), which also depends on the
instants t1 and t2, subtending a unitary volume
(i.e.

˜
p (x1, x2) dx1dx2 = 1), and whose 3d

graph describes where in the x1x2 plane any
couple of values is more or less probable

0

0.2

0.4

0.6
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2 -2 -1 0 1 2
x1 x2

e
- 2 2(x + x  )1 2

π

1p(x1,x2)
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Correlation between random variables
The joint p.d.f. pX1X2 (x1x2; t1t2) is now used in the computation of the mixed moments
of the 2D r.v. (x1, x2), that is, an expected value in which the pairs of values are
weighted according to their probability of occurring together

The mixed moment of order (1,1) (page 11) m(1,1)
XX (t1, t2) between the r.v. is called

correlation and is defined as

m(1,1)
XX (t1, t2) = EX1X2 {x1x2} =

˜
x1x2 · pX1X2 (x1x2; t1t2) dx1dx2

Statisticians use the same term to define a value computed from a finite set of joint
observations, such as corr (x , y) = 1

N
∑N

i=1 xi yi , which is formally equivalent to a time
average rather than an ensemble average; in this case instead of the histogram for 1D
variables there are scattering diagrams

-1

1

-1 1

x1

x2
corr = .143
cov = .143
ρ = .792

B) -1

1

-1 1

x1

x2corr = .001
cov = .001
ρ = .016

C)

1

1

x1

x2 corr = .246
cov = -.007
ρ = -.021

E)

-1

1

-1 1

x1

x2 corr = .002
cov = .002
ρ = .004

F)

whose meaning could possibly be discussed verbally
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Covariance, statistical independence and
uncorrelatedness
If the two r.v. are statistically independent (i.e. pX1X2 (x1, x2; t1, t2) = p (x1) p (x2)), then
the integral defining the correlation factors, and m(1,1)

XX (t1, t2) reduces to the product of
two mean values:

m(1,1)
XX (t1, t2) = E {x1, x2} =

˜
x1x2p (x1) p (x2) dx1dx2 =

=
´

x1p (x1) dx1 ·
´

x2p (x2) dx2 = E {x1} E {x2} = mX1 mX2

Covariance Is indicated as σ (x1, x2) and is equal to the correlation m(1,1)
XX (t1, t2) minus

the term mX1 mX2 , corresponding to the central mixed moment between the two r.v.:
σ (x1, x2) = E {(x1 − mX1 ) (x2 − mX2 )} =

= E {x1x2} − E {x1mX2 } − E {mX1 x2} + E {mX1 mX2 } =
= E {x1x2} − mX1 mX2 = m(1,1)

XX (t1, t2) − mX1 mX2

Uncorrelatedness By combining the above results we can verify that
If two random variables x1 and x2 are statistically independent, their covariance
σ (x1, x2) is null, and are therefore said to be uncorrelated

This is valid in one direction only, since if σ (x1, x2) = 0 the two r.v. are not necessarily
statistically independent. Uncorrelatedness implies independence only for jointly
Gaussian r.v.
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Correlation of an ergodic stationary process

If the process from which x1 and x2 are extracted is stationary
then the joint p.d.f. depends only on the difference τ = t2 − t1 between the
instants t2 and t1 and therefore also the correlation depends only on τ :

m(1,1)
XX (t1, t2) = E {x1x2} =

¨
x1x2 · pX1X2 (x1x2; τ) dx1dx2 = m(1,1)

XX (τ)

If the process is also ergodic

then m(1,1)
XX (τ) has the same values of the corresponding time average

On the other hand, if pX1X2 (x1x2; τ) is not known, but we have some realization of
the process instead

▶ then the correlation can be obtained by the time average x (t, θi ) x (t + τ, θi )
calculated for any θi realization, is indicated as Rx (τ), and corresponds to

Rx (τ) = lim
T→∞

1
T
´ T/2

−T/2x (t, θi ) x (t + τ, θi ) dt ∀θi ∈ Θ

Since for stationary and ergodic processes the above formulas provide the same result,
for both of them the correlation will be indicated as Rx (τ)
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Autocorrelation and intercorrelation
of deterministic signals

Autocorrelation Is the result of evaluating the latest time average for a deterministic
power signal x (t), and is again indicated by Rx (τ)

Rx (τ) = x (t) x (t + τ) = limT→∞
1
T
´ T/2

−T/2x (t) x (t + τ, ) dt
while for an energy signal the autocorrelation is defined as

Rx (τ) =
´∞

−∞x∗ (t) x (t + τ) dt
where the conjugate generalizes the expression to the case of complex signals

note that the autocorrelation is a form of dot product that calculates the mutual energy
(or power) of signal x (t) with respect to its anticipated copy (speech example)
a high value of Rx (τ) for some τ indicates that the two copies of the signal are similar

Intercorrelation The same concepts are even more valid when operating on two
different signals x (t) and y (t). For energy signals we write

Rxy (τ) =
´∞

−∞ x∗ (t) y (t + τ) dt
and for power signals Rxy (τ) = limT→∞

1
T
´ T/2

−T/2 x∗ (t) y (t + τ) dt.
If we find Rxy (τ) = 0 for some τ then the signals are said to be

▶ orthogonal, with reference to the signal space for which Rxy (τ) is a dot product,
but also

▶ uncorrelated, with reference to the statistical aspect for signals with zero mean
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Links with the convolution

Link with convolution Rx (τ) and Rxy (τ) can also be seen as time-dependent signals,
in a way similar to the convolution integral whose result is a function of time. The two
operators are interconnected, as by means of a change of variables it can be shown that

Rxy (τ) =
´∞

−∞x∗ (t) y (t + τ) dt = x∗ (−t) ∗ y (t)

Graphic construction
The last observation invites us to draw the graphic construction
shown, illustrating the calculus of the autocorrelation for
x (t) = rect2T (t), in a similar way to how convolution operates,
BUT:
• no axis inversion is now performed, and the translation is
backward (time advance) rather than forward
• for a real rectangle x (t) = x∗ (−t) holds, and therefore the
operation is equivalent to calculating x (t) ∗ x (t), but unlike the
convolution, in the second line of the graph the term x (t + τ)
for τ > 0 is shifted to the left
• the third line shows the product of the signals above of it,
whose integral calculates the area, providing the value of Rx (τ)
on the right, as in the picture

x(t)

−τ

τ

T−T

−2T 2T

R ( )τx

x(t)x(t+ )τ

x(t+ )τ

Area

τ

t

t

t
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Properties of the autocorrelation
Invariance with respect to time shifts If y (t) = x (t + θ) then Ry (τ) = Rx (τ), or

Autocorrelation does not take into account the phase spectrum
Actually, x (t) and y (t) also have the same energy density Ex (f ) = Ey (f )

Temporal extension If x (t) has a finite duration then Rx (τ) has twice the duration
− if x (t) is an energy signal with unlimited duration then lim

t→∞
x (t) = 0 and Rx (τ) also

− if x (t) is an ergodic process member (a power signal), then lim
τ→∞

Rx (τ) = 0, but
Periodic signals Their Rx (τ) is also periodic with the same period, and defined as
Rx (τ) =

∑∞
n=−∞RT

x (τ − nT ) where RT
x (τ) = 1

T
´ T/2

−T/2x∗ (t) x (t + τ) dt
Continuous component If x (t) = x0 (t) + a with E {x0 (t)} = 0 then mx = a, and
Rx (τ) = Rx0 (τ) + a2, so that Rx (τ) does not vanishes but lim

τ→∞
Rx (τ) = m2

x

Maximum in the origin It results Rx (0) = maxτ {Rx (τ)} and

Rx (0) =

{ ´∞
−∞ |x (t)|2 dt = Ex > |Rx (τ ̸= 0)| if x (t) is of energy

lim
T→∞

1
T
´ T/2

−T/2 |x (t)|2 dt = Px ≥ |Rx (τ ̸= 0)| if x (t) is of power

Conjugate symmetry It turns out Rx (τ) = R∗
x (−τ), so F {Rx (τ)} is real

− if x (t) is real then Rx (τ) = Rx (−τ) i.e. the Rx (τ) of a real signal is real even
− Finally, Rxy (τ) = R∗

yx (−τ)
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Pearson correlation coefficient
It is defined as

ρxy = σxy

σx σy

normalizing the σxy covariance of two r.v. x and y with respect to their standard
deviations σx and σy , thus producing a limited range of values −1 ≤ ρxy ≤ 1. For it
there is a geometric interpretation:

the standard deviation σx can be thought of as to the norm ∥x∥ of x , and
σxy can be seen as the dot product ⟨x , y⟩ between x and y ; indeed

▶ if x comes from an ergodic process with zero mean then σ2
x equals the power of its

members, and
▶ if x and y are extracted from jointly ergodic processes then the σxy equals the

intercorrelation function (evaluated in zero), i.e. their mutual power

two r.v. can be said to be orthogonal when ρxy = 0, while ρxy = ±1 means that x
and y are always proportional each other

▶ orthogonality ρxy = 0 only expresses the absence of a linear relationship between x
and y , as for the case F) at page 21

We also mention the formal extension of Schwartz’s inequality, if
the concept of cosine between x and y is associated to ρxy

the condition −1 < ρxy < 1 allows us to state that |σxy | ≤ σx σy
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The matched filter
A filter is said to be matched when its impulse response h (t) is defined starting
from a specific signal g (t) with limited duration T , which one wishes to identify
even when immersed in a particularly intense noise
by setting h (t) = g (T − t) the convolution operation evaluates the
intercorrelation between g (t) and the input x (t) to the filter

▶ if x (t) = g (t) then the filter output computes the autocorrelation
Rg (τ) with a maximum at the origin (actually, at time t = T )

▶ if x (t) = g (t) + n (t) then the very small intercorrelation Rgn (τ) is
also added to the output

▶ if x (t) = n (t) then only intercorrelation Rgn (τ) is present at the
output

h (t)=g(T-t)R

x(t)=g(t)

   t

T

   t

T

the functionality is best explained by means of a simulation, and for those who
dare to use Octave, this is the code

▶ then if someone was able to try it also with Matlab and could tell me the outcome,
I would be very grateful

⋆ it could be enough to replace the # at the beginning of the comments with a
%, who knows why Matlab wants it like this!

an in-depth analysis is provided in the book, demonstrating how the matched filter
is optimal from the point of view of the reduction of the signal-to-noise ratio, with
a reasoning based on the Schwartz inequality
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How to get the spectral density of unknown signals
Wiener’s theorem allows to characterize the spectral density for both the case of
random processes as well as deterministic signals

The power density spectrum Px (f ) (or energy density Ex (f )) of a deterministic
or random signal x (t) is equal to the Fourier transform of its autocorrelation
function, namely Px (f ) = F {Rx (τ)}

Proof for energy signals

Rx (τ) =
´∞

−∞x∗ (t) x (t + τ) dt =
´∞

−∞X ∗ (f ) X (f ) ej2πf τ df =

= F−1 {X ∗ (f ) X (f )} = F−1 {Ex (f )}

where we first applied Parseval’s theorem, then the transform property for time shift,
and finally recognized X ∗ (f ) X (f ) as the Ex (f ) energy density

As anticipated, the theorem also holds (demonstrations) for
power signals, for which the autocorrelation function Rx (τ) to use is that given by
Rx (τ) = limT→∞

1
T
´ T/2

−T/2x (t) x (t + τ) dt
ergodic processes, as every member of it has the same Px (f ), obtained from

▶ the above Rx (τ) of any of them, or
▶ the mixed moment m(1,1)

XX (τ) = E {x (t) x (t + τ)} calculated as
an ensemble mean
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Discussion

Wiener’s theorem is a very powerful tool which opens an alternative way to verify
and extend known results

for example the property Rx (0) = Px can now be derived from the one of the
initial value

Rx (0) = F−1 {Px (f )}
∣∣
τ=0 =

´∞
−∞ Px (f ) ej2πf τ df

∣∣∣
τ=0

=
´∞

−∞ Px (f ) df = Px

when applied to periodic or energy signals it
allows to follow an alternative paths for the
calculation of the corresponding power (or
energy) density, as shown
being able to define a Px (f ) also for random
processes and power signals allows us to
analyze the filtering effects also for this class
of signals

X(f)

| |
2F{ }

F{ }

x(t)

m ( )
(1,1)
x τ

R ( )τx

E (f)
x

P (f)
x

Xn
Fourier series

energy signal

energy, power,
or random signal

Let us now apply the relationship between Px (f ) and Rx (τ) expressed by the
Wiener’s theorem to some notable cases
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Periodic signals
In this case expressing x (t) with period T by its Fourier series x (t) =

∑∞
n=−∞ Xn ej2πnFt

and substituting it into Rx (τ) = 1
T
´ T/2

−T/2 x∗ (t) x (t + τ) dt we arrive at

Rx (τ) =
∑∞

n=−∞ |Xn|2 ej2πnFτ

that is, also Rx (τ) is expressed as a Fourier series, so that it is periodic in turn, as
already noted. Thus the power density Px (f ) is equal to

Px (f ) = F {Rx (τ)} =
∑∞

n=−∞ |Xn|2 δ (f − nF )

confirming the Parseval’s theorem
Continuous component
if the signal can be written as x (t) = x0 (t) + a with E {x0 (t)} = 0 then we get
Rx (τ) = Rx0 (τ) + a2 and therefore

Px (f ) = F {Rx (τ)} = Px0 (f ) + a2δ (f )

that is, the spectral density has a pulse with area a2 in the origin
or, from the opposite point of view, a pulse in the origin for Px (f ) reveals a
continuous component in x (t)
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Band-limited white process
A noise process n (t) is called white when it has a constant power
density, and bandwidth limitation in between ±W allows to write

Pn (f ) = N0
2 rect2W (f )

with autocorrelation
Rn (t) = F−1 {Pn (f )} = N0W sinc (2Wt)

so that it can be verified that
Rn (0) = Pn =

´∞
−∞Pn (f ) df =

´W
−W

N0
2 df = N0W = σ2

n

t

f

W−W

N0_
2

P (f)n

R (t)n

2W
__1

W
__1−

W
__1 −

2W
__1

0
=N W
2
n

σ

⃝ As Rn (t) zeroes for t = k/2W , samples of n (t) spaced by k/2W are uncorrelated
if n (t) is also Gaussian these samples are also statistically independent (2 page 40)

⃝ As W increases Rn (t) goes to zero faster, so that
noise samples remains correlated for a shorter time, or
the correlation between samples spaced by a fixed time interval becomes smaller

Thinking now at n (t) as the output of an ideal low pass filter with H (f ) = rect2W (f )
when an infinite bandwidth process p (t) (with Rp (t) = δ (t)) is put at its input

it is evident that correlation Rn (τ) between n (t) samples spaced by τ ̸= 0 is a
consequence of the memory introduced by the filter impulse response, since
convolution between p (t) and h (t) makes the output values to be a linear
combination of the (past) input values
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Other examples
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Multidimensional Gaussian r.v.

A realization of an n−dimensional gaussian r.v. X is given by a column vector
x = [x1, x2, · · · , xn]T whose elements are n different uni-dimensional marginal
r.v. xi , i = 1, 2, · · · , n, all Gaussian. Their joint p.d.f. is expressed as

pX (x) = 1√
(2π)n det(Σx )

exp
{

− 1
2 (x − mx )T Σ−1

x (x − mx )
}

where mx is the vector of mean values of the marginals and Σx is their covariance
matrix whose n × n elements are equal to σij = E

{(
xi − mi

)(
xj − mj

)}
, that is

mx =


m1
m2
...

mn

 and Σx =


σ2

1 σ12 · · · σ1n
σ21 σ2

2 · · · σ2n
...

...
. . .

...
σn1 σn2 · · · σ2

n


For x = mx the exponent vanishes and the term 1/

√
(2π)n det(Σx ) is the maximum

height of pX (x), and
for x ̸= mx the exponent itself is a quadratic form (actually, a paraboloid) always
positive, which increases as |x − mx | increases, so that pX (x) decreases
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An example of a bidimensional Gaussian r.v.

⃝ Figure a) shows a 3d plot for a two-dimensional Gaussian p.d.f. pXY (x , y), with

m =
[

0
1

]
and Σ =

[
1 0.1

0.1 0.5

]
where the asymmetry is due to the values σ2

x ̸= σ2
y , and the centering due to my ̸= 0

⃝ fig. b) shows the same p.d.f. from a point of view parallel to the axes
⃝ fig. c) reports the level curves, showing that

the quadratic form in the exponent determine elliptical contours for the surface of
pXY (x , y), and
the length of the axes of the ellipses is related to σx and σy , while the inclination
depends on the covariance σxy (check it by graphics with Octave)
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Statistical independence for uncorrelated Gaussian
We want to demonstrate what was stated at the end of page 22, that is,

uncorrelatedness implies statistical independence only for jointly Gaussian r.v.

Indeed, if the marginal gaussian r.v. are uncorrelated (σxi xj = 0 with i ̸= j) then
the covariance matrix Σx turns out to be diagonal
the same for its inverse, whose elements are now equal to 1/σ2

xi

we obtain det(Σx ) =
∏n

i=1 σ2
xi

Thus
p (x) = 1√

(2π)n
∏n

i=1
σxi

exp
{

− 1
2

[∑n
i=1

(xi −mxi )2

σ2
xi

]}
which is equal to the product of all the marginals p (xi ) = 1√

2πσxi
exp

{
− 1

2
(xi −mxi )2

σ2
xi

}
since the factorization of a joint p.d.f. in terms of its marginals is precisely the
condition of statistical independence, the claim is true

Let us verify the result for an (x , y) pair of statistically independent Gaussian r.v., with zero
mean and variance σ2

x and σ2
y respectively. We get:

pX (x) pY (y) = 1√
2πσx

exp
(

− x2

2σ2
x

)
· 1√

2πσy
exp

(
− y2

2σ2
y

)
= 1

2πσx σy
exp

[
− 1

2

(
x2

σ2
x

+ y2

σ2
y

)]
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Gaussian process

A fundamental class of random signals is that of
ergodic processes whose first order p.d.f. is
Gaussian, and
a set of xi r.v. extracted from its members at
different instants ti are jointly Gaussian r.v., so that
if a random vector x is made from the xi , their joint
p.d.f. is that at page 38

t1 t2 tn

x1 x2 xn

τ12 τ1n

Stationarity guarantees that
all the elements of the vector mx of mean values are equal to mx = E {x (t)}, and
the elements of the Σx covariance matrix are equal to the values
σx (τ) = E {(x (t) − mx ) (x (t + τ) − mx )} of the process covariance, evaluated at
the time intervals τij between the instants in which the marginal r.v. xi and xj are
extracted
In other words, the values σij appearing in Σx are obtained as σij = σx (τij), and
the variance σ2

x = σx (0) appears on the entire diagonal (example in the book)

Since the process is Gaussian, the two quantities mx and Σx describe it completely, and
for an ergodic process they can be estimated by any member of the process
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Spectral estimation

Wiener’s theorem allow us to know the power spectral density for an ergodic
process when its autocorrelation m(1,1)

X (τ) = RX (τ) is known
if the ensemble statistics are unknown, but the process is ergodic, RX (τ)
can be estimated from some of its available members

▶ by means of a short-time time average computed on a signal window, or
▶ as a running real-time estimate as shown here

Another solution is to estimate Px (f ) without going through autocorrelation
using instead the squared Fourier transform |XT (f )|2 of a time-limited
signal segment, as described in the next slide

But: some signals, although representative of many others, cannot be considered
members of a stationary process (for example, speech), and we are more
interested on its short-time spectral changes

in this case (in addition to performing the DFT on signal windows) we can
use parametric techniques such as Linear Predictive Coding or LPC, which
also uses temporal segments of the signal to evaluate a short-time
autocorrelation function
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Periodogram

Given a x (t, θi ) realization of a process

we select from it a window of length T and we define a signal of limited duration
xT (t) = x (t, θi ) rectT (t)

▶ now xT (t) is an energy signal, with transform XT (f ) and energy density
ExT (f ) = |XT (f )|2

under the assumption of stationarity an estimate P̂x (f ) of Px (f ) of the whole
member is simply obtained as

P̂x (f ) = PxT (f ) = |XT (f )|2

T

which takes the name of periodogram, due to its original use for the discovery of
periodicity within of a noisy signal

as T tends to ∞, P̂x (f ) tends to the true power density

limT→∞
|XT (f )|2

T = Px (f )
of the process member xT (t, θi ) and, if it belongs to an ergodic process, to that of
any other member
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Bias, resolution and variance of the periodogram
Bias Having T not tending to ∞, P̂x (f ) is a biased estimate of Px (f ) (the rect window on
x (t) is equivalent to a tri window applied to the RX (τ) estimate), giving

P̂x (f ) = Px (f ) ∗ T (sinc (fT ))2

that is, a temporal windowing distortion effect happens, and P̂x (f ) for any value of f got a
bias, which disappears if T → ∞, because in this case T (sinc (fT ))2 → δ (f )
Spectral resolution It depends on the main lobe width of (sinc (fT ))2, i.e. 1/T , and also
disappears if T → ∞ , for the same reason
Variance of the estimate
Although P̂x (f ) reduces its bias as T increases, it still is a r.v. (it depends on the member θ),
and its variance... does not decrease with increasings T , making the estimator inconsistent!

It can be proven that the variance σ2
T of the estimate is equal to the value of Px (f ) itself,

that is for each frequency value, the standard deviation of the value of P̂x (f ) is equal to√
Px (f ), regardless of how large T is

in other words, the estimator variance does not decreases as available data increases, and
the reason is that in a numerical implementation using dft, as T increases the number of
frequency values that are calculated also increases

Solutions to this problem introduce a reduction in spectral resolution
one can smooth the P̂x (f ) obtained, averaging the values on nearby frequencies: this
operation corresponds to a filtering in frequency
a different method involves dividing the observation interval in different sub-intervals,
calculating the periodogram on each of them, and averaging the results

Example in the book
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A review of results

In this last section of the set of slides, a series of results relating to the
passage of signals, both deterministic and random, through a filter are
listed

These concern
the determination of the power (or energy) density at the output of a
filter

▶ where Wiener’s theorem plays a great role in unifying the treatment for
any type of signal

the calculation of statistical indicators for the same output signal
the result for the sum and product of random signals

You probably won’t find the passages very interesting, which in fact we
mostly leave inside the book: however, the series of results shown can
constitute a sort of handbook to consult in case of doubt
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Energy signals through a filter

We first evaluate the result for the output energy density Ey (f ) (and the respective
energy Ey ) when an energy signal x (t) is input
We know that by Parseval’s theorem it results Ey (f ) = Y (f ) Y ∗ (f ); then since
Y (f ) = X (f ) H (f ) we can write

Ey (f ) = Ex (f ) |H (f )|2

By executing the Fourier antitransform of both sides we obtain

Ry (τ) = F−1 {Ey (f )} = F−1 {
Ex (f ) |H (f )|2

}
= Rx (τ) ∗ Rh (τ)

as will be shown later, this result is valid (in the respective terms) also for the
cases of a periodic or random signal
|H (f )|2 can also be seen as the energy density of the filter, i.e.
|H (f )|2 = Eh (f ) = F {Rh (τ)}

As a corollary we have the following results, all equivalent for the purpose of calculating
the total energy:

Ey = Ry (0) =
´∞

−∞Ey (f ) df =
´∞

−∞Ex (f ) |H (f )|2 df =
´∞

−∞Rx (τ) Rh (τ) dτ
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Periodic signals through a filter

Here the input signal x (t) can be expressed as x (t) =
∑

nXnej2πnFt to which it
corresponds

a transform X (f ) =
∑

n Xn δ (f − nF ) and

a power density Px (f ) =
∑∣∣Xn

∣∣2
δ (f − nF )

The output signal y (t) is also periodic whith Fourier coefficients given by
Yn = XnH (nF ), i.e.

|Yn| = |Xn| |H (nF )| ; and arg (Yn) = arg (Xn) + arg (H (nF ))

Since the power density of y (t) is equal to Py (f ) =
∑

n |Yn|2 δ (f − nF ), we get

Py (f ) =
∑

n |Xn|2 |H (nF )|2 δ (f − nF ) = |H (f )|2 Px (f )

Again, anti-transformation gives Ry (τ) = Rx (τ) ∗ Rh (τ)

Alessandro Falaschi Random signals and Wiener’s theorem Signal Processing & Inform Theory



Ergodic processes and power signals

Also in this case it can be verified that m(1,1)
Y (τ) = m(1,1)

X (τ) ∗ Rh (τ), and so

Py (f ) = Px (f ) |H (f )|2

The result obviously applies to any member of the process, for which as known it results
m(1,1)

X (τ) = Rx (τ), and therefore the upper relation is also valid for any power signal

Power gain
It is the name by which the ratio

|H (f )|2 = Py (f )
Px (f )

is most often indicated, or |H (f )|2 = Ey (f )
Ex (f ) in the case of energy signals

|H (f )|2 re-proposes in power or energy terms the input-output signal relation
given by H (f )
Otherwise in literature |H (f )|2 is also referred to as

▶ the power response, or even
▶ spectral density of the power response
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Mean value, variance, and amplitude density
It may be of interest to investigate about the statistical characterization of a filter
output when an ergodic process is put at its input
Mean value Equal to the input one, times the zero frequency gain H (0), i.e.

my = E {y (t)} = E {x (t) ∗ h (t)} = E {x (t)} ∗ h (t) =
= mx

´∞
−∞ h (τ) dτ = mx H (0)

Variance By ergodicity Py = y 2 (t) = E
{

y 2} = m(2)
y , thus we have

σ2
y = m(2)

y − (my )2 = Py − (my )2

so that for Py these alternative formulas holds

Py = Ry (0) =
´∞

−∞ Py (f ) df =
´∞

−∞ Px (f ) |H (f )|2 df =
=
´∞

−∞ Rx (τ) Rh (τ) dτ

Probability density function Nothing general can be said about pY (y), and its exact
expression must be determined from time to time. BUT:

it the filter input is a Gaussian processes, also the output will be Gaussian
▶ This is a consequence of the invariance feature of the Gaussian processes with

respect to linear transformations
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Combination of different kind of signals

We refer again to the three basic operations already
exploited as building blocks for digital filter
architecture design

Delay - as well known, there is only a tilt in the
phase spectrum, or Z (f ) = X (f ) · e−j2πfT

sum

product

y(t)

x(t) z(t)=

x(t)+y(t)

z(t)=

x(t)  y(t)

delay        x(t)

y(t)

x(t)

z(t)=

x(t-T)T

Sum and product of a determinististic and a random signal
⃝ x (t) deterministic, y (t) random process

z (t) is (in general) a non-stationary process, since the ensemble averages of
z (t) depend at each instant on the value of x (t)

⃝ x (t) periodic, y (t) a random process
z (t) is a cyclostationary process, as its statistics vary cyclically over time,
assuming identical values with the same period of x (t)

⃝ x (t) is a constant equal to a, and y (t) is a random process
z (t) is a process with mean mz = my + a (or mz = my · a for the product),
with power Pz = Py + a2 (or ·a2), and autocorrelation Rz (τ) = Ry (τ) + a2

(or · a2)
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Sum of statistically independent random signals
Mean value - also valid in the absence of statistical independence

mz = E {x (t) + y (t)} = E {x (t)} + E {y (t)} = mx + my
Total power

Pz = E
{

(x (t) + y (t))2} = E
{

x2 (t)
}

+ E
{

y 2 (t)
}

+ 2E {x (t) · y (t)} =
= Px + Py + 2mx my

Variance
σ2

z = E
{

(z (t) − mz)2} = Pz − (mz)2 = Px + Py + 2mx my − (mx + my )2 =
= Px − (mx )2 + Py − (my )2 = σ2

x + σ2
y

Autocorrelation
Rz (τ) = E {z (t) z (t + τ)} = E {(x (t) + y (t)) (x (t + τ) + y (t + τ))} =

= E {x (t) x (t + τ)} + E {y (t) y (t + τ)} + E {x (t) y (t + τ)} + E {x (t + τ) y (t)} =
= Rx (τ) + Ry (τ) + 2mx my

Power density spectrum
Pz (f ) = F {Rz (τ)} = Px (f ) + Py (f ) + 2mx my δ (f )

Probability density function
pZ (z) =

´∞
−∞ pX (θ) pY (z − θ) dθ = pX (x) ∗ pY (y)

BUT: the sum of two Gaussian processes is still Gaussian: in fact the convolution
between Gaussian functions is a Gaussian, with mean equal to the sum of the means,
and variance equal to the sum of variances
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Product of statistically independent random signals

Mean value
mz = E {z (t)} = E {x (t) y (t)} = E {x (t)} E {y (t)} = mx · my

Total power
Pz = E

{
z2 (t)

}
= E

{
x2 (t) y 2 (t)

}
= E

{
x2 (t)

}
E

{
y 2 (t)

}
= Px · Py

Variance
σ2

z = E
{

(z (t) − mz)2} = Pz − (mz)2 = Px · Py − (mx · my )2

Autocorrelation function
Rz (τ) = E {z (t) z (t + τ)} = E {x (t) y (t) x (t + τ) y (t + τ)} =

= E {x (t) x (t + τ)} E {y (t) y (t + τ)} = Rx (τ) · Ry (τ)
Note that the uncorrelatedness of one of the two processes for a certain value of τ
causes the uncorrelatedness of the product, at the same time τ

Power density spectrum
Pz (f ) = F {Rz (τ)} = F {Rx (τ) · Ry (τ)} = Px (f ) ∗ Py (f )

Probability density function
pZ (z) =

´∞
−∞ pX (θ) pY

( z
θ

) dθ
|θ|
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